Characterization of auxiliary iron–sulfur clusters in a radical S‐adenosylmethionine enzyme PqqE from Methylobacterium extorquens AM1

نویسندگان

  • Natsaran Saichana
  • Katsuyuki Tanizawa
  • Hiroshi Ueno
  • Jiří Pechoušek
  • Petr Novák
  • Jitka Frébortová
چکیده

PqqE is a radical S-adenosyl-l-methionine (SAM) enzyme that catalyzes the initial reaction of pyrroloquinoline quinone (PQQ) biosynthesis. PqqE belongs to the SPASM (subtilosin/PQQ/anaerobic sulfatase/mycofactocin maturating enzymes) subfamily of the radical SAM superfamily and contains multiple Fe-S clusters. To characterize the Fe-S clusters in PqqE from Methylobacterium extorquens AM1, Cys residues conserved in the N-terminal signature motif (CX 3 CX 2C) and the C-terminal seven-cysteine motif (CX 9-15 GX 4 CX n CX 2 CX 5 CX 3 CX n C; n = an unspecified number) were individually or simultaneously mutated into Ser. Biochemical and Mössbauer spectral analyses of as-purified and reconstituted mutant enzymes confirmed the presence of three Fe-S clusters in PqqE: one [4Fe-4S]2+ cluster at the N-terminal region that is essential for the reductive homolytic cleavage of SAM into methionine and 5'-deoxyadenosyl radical, and one each [4Fe-4S]2+ and [2Fe-2S]2+ auxiliary clusters in the C-terminal SPASM domain, which are assumed to serve for electron transfer between the buried active site and the protein surface. The presence of [2Fe-2S]2+ cluster is a novel finding for radical SAM enzyme belonging to the SPASM subfamily. Moreover, we found uncommon ligation of the auxiliary [4Fe-4S]2+ cluster with sulfur atoms of three Cys residues and a carboxyl oxygen atom of a conserved Asp residue.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characterization and nucleotide sequence of pqqE and pqqF in Methylobacterium extorquens AM1.

Methylobacterium extorquens AM1 pqqEF are genes required for synthesis of pyrroloquinoline quinone (PQQ). The nucleotide sequence of these genes indicates PqqE belongs to an endopeptidase family, including PqqF of Klebsiella pneumoniae, and M. extorquens AM1 PqqF has low identity with the same endopeptidase family. M. extorquens AM1 pqqE complemented a K. pneumoniae pqqF mutant.

متن کامل

Pyrroloquinoline quinone biogenesis: demonstration that PqqE from Klebsiella pneumoniae is a radical S-adenosyl-L-methionine enzyme.

Biogenesis of pyrroloquinoline quinone (PQQ) in Klebsiella pneumoniae requires the expression of six genes (pqqA-F). One of these genes (pqqE) encodes a 43 kDa protein (PqqE) that plays a role in the initial steps in PQQ formation [Veletrop, J. S., et al. (1995) J. Bacteriol. 177, 5088-5098]. PqqE contains two highly conserved cysteine motifs at the N- and C-termini, with the N-terminal motif c...

متن کامل

Novel formaldehyde-activating enzyme in Methylobacterium extorquens AM1 required for growth on methanol.

Formaldehyde is toxic for all organisms from bacteria to humans due to its reactivity with biological macromolecules. Organisms that grow aerobically on single-carbon compounds such as methanol and methane face a special challenge in this regard because formaldehyde is a central metabolic intermediate during methylotrophic growth. In the alpha-proteobacterium Methylobacterium extorquens AM1, we...

متن کامل

Purification and Characterization of Hydroxypyruvate Reductase from the Facultative Methylotroph Methylobacterium extorquens AMI

Hydroxypyruvate reductase was purified to homogeneity from the facultative methylotroph Methylobacterium extorquens AM1. It has a molecular mass of about 71 kDa, and it consists of two identical subunits with a molecular mass of about 37 kDa. This enzyme uses both NADH (Km = 0.04 mM) and NADPH (Km = 0.06 mM) as cofactors, uses hydroxypyruvate (Km = 0.1 mM) and glyoxylate (Km = 1.5 mM) as the on...

متن کامل

Characterization of two methanopterin biosynthesis mutants of Methylobacterium extorquens AM1 by use of a tetrahydromethanopterin bioassay.

An enzymatic assay was developed to measure tetrahydromethanopterin (H(4)MPT) levels in wild-type and mutant cells of Methylobacterium extorquens AM1. H(4)MPT was detectable in wild-type cells but not in strains with a mutation of either the orf4 or the dmrA gene, suggesting a role for these two genes in H(4)MPT biosynthesis. The protein encoded by orf4 catalyzed the reaction of ribofuranosylam...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2017